Senin, 13 Januari 2014

SEMUA TENTANG FISIKA



BESARAN VEKTOR
(pengurangan vektor)

Pengurangan vektor pada prinsipnya sama dengan penjumlahan, tetapi dalam hal ini salah satu vektor mempunyai arah yang berlawanan. Misalnya, vektor A dan B, jika dikurangkan maka:

A - B = A + (-B)


Di mana, -B adalah vektor yang sama dengan B, tetapi berlawanan arah.




untuk mengetahui prinsip-prinsip yang digunakan dalam penjumlahan vektor, silahkan lihat di, 
METODE VEKTOR MENGGUNAKAN SEGITIGA

BESARAN VEKTOR
(penjumlahan vektor dengan metode segitiga)

Metode segitiga merupakan cara lain untuk menjumlahkan dua vektor, selain metode jajaran genjang. Dua buah vektor A dan B, yang pergerakannya ditunjukkan Gambar 1.22(a), akan mempunyai resultan yang persamaannya dituliskan:

R = A + B

Resultan dua vektor akan diperoleh dengan menempatkan pangkal vektor yang kedua pada ujung vektor pertama. Resultan vektor tersebut diperoleh dengan menghubungkan titik pangkal vektor pertama dengan ujung vektor kedua.

Pada Gambar 1.22(b), pergerakan dimulai dengan vektor B dilanjutkan dengan A, sehingga diperoleh persamaan:

R = B + A

Jadi,

A + B = B + A

Hasil yang diperoleh ternyata tidak berubah. Jadi, dapat disimpulkan bahwa penjumlahan vektor bersifat komutatif.

Tahapan-tahapan penjumlahan vektor dengan metode segitiga adalah sebagai berikut:

a) pindahkan titik tangkap salah satu vektor ke ujung berikutnya,
b) hubungkan titik tangkap vektor pertama ke ujung vektor kedua yang menunjukkan resultan kedua vektor tersebut,
c) besar dan arah $\vec{R}$ dicari dengan aturan cosinus dan sinus.
 
Jika penjumlahan lebih dari dua buah vektor, maka dijumlahkan dulu dua buah vektor, resultannya dijumlahkan dengan vektor ke-3 dan seterusnya. Misalnya, penjumlahan tiga buah vektor A, B, dan C yang ditunjukkan pada Gambar 1.23. Pertama-tama kita jumlahkan vektor A dan B yang akan menghasilkan vektor V. Selanjutnya, vektor V tersebut dijumlahkan dengan vektor C sehingga dihasilkan resultan R, yang dituliskan:

R = A + (B + C) = A + W

Jika banyak vektor, maka penjumlahan vektor dilakukan dengan menggunakan metode poligon (segi banyak).

k
 METODE JAJARAN GENJANG
BESARAN VEKTOR
(penjumlahan vektor metode jajar genjang)

Penjumlahan dua buah vektor ialah mencari sebuah vektor yang komponen-komponennya adalah jumlah dari kedua komponen-komponen vektor pembentuknya. Dengan kata lain untuk “menjumlahkan dua buah vektor” adalah “mencari resultan”.



Untuk vektor-vektor segaris, misalnya vektor A dan B dalam posisi segaris dengan arah yang sama seperti tampak pada Gambar 1.20(a), maka resultan (jumlah) vektor dituliskan:



Pada kasus penjumlahan vektor yang lain, seperti yang ditunjukkan Gambar 1.20(b) terdapat dua vektor yang tidak segaris yang mempunyai titik pangkal sama tetapi dengan arah yang berbeda, sehingga membentuk sudut tertentu. Untuk vektor-vektor yang membentuk sudut α , maka jumlah vektor dapat dilukiskan dengan menggunakan metode tertentu. Cara ini disebut dengan metode jajaran genjang.

Cara melukiskan jumlah dua buah vektor dengan metode jajaran genjang sebagai berikut:

a. titik tangkap A dan B dibuat berimpit dengan memindahkan titik tangkap A ke titik tangkap B, atau sebaliknya;
b. buat jajaran genjang dengan A dan B sebagai sisi-sisinya;
c. tarik diagonal dari titik tangkap sekutu, maka A + B = R adalah diagonal jajaran genjang.

Gambar 1.21 menunjukkan penjumlahan dua vektor A dan B. Dengan menggunakan persamaan tertentu, dapat diketahui besar dan arah resultan kedua vektor tersebut.

 

Persamaan tersebut diperoleh dengan menerapkan aturan cosinus pada segitiga OPR, sehingga dihasilkan:

$(OR^{2})=(OP^{2})+(PR^{2})-2(OP)(PR)cos(180^{\circ}-\alpha)=(OP^{2})+(PR^{2})-2(OP)(PR)(-cos\alpha)$

$(OR^{2})=(OP^{2})+(PR^{2})-2(OP)(PR)cos\alpha$

Diketahui bahwa OP = A, PR = OQ = B, OR = R, sehingga:



R adalah diagonal panjang jajaran genjang, jika α lancip. Sementara itu, α adalah sudut terkecil yang dibentuk oleh A dan B.
Sebuah vektor mempunyai besar dan arah. Jadi setelah mengetahui besarnya, kita perlu menentukan arah dan resultan vektor tersebut. Arah R dapat ditentukan oleh sudut antara R dan A atau R dan B.

Misalnya sudut $\theta$ merupakan sudut yang dibentuk R dan A, maka dengan menggunakan aturan sinus pada segitiga OPR akan diperoleh:

$\frac{R}{sin(180-\alpha )} = \frac{B}{sin\theta }= \frac{R}{sin\alpha }$
$\frac{R}{sin\alpha }=\frac{B}{sin\theta }$

sehingga:

$sin\theta=\frac{Bsin\alpha}{R}$

Dengan menggunakan persamaan tersebut, maka besar sudut $\theta$ dapat diketahui.




JENIS-JENIS ALAT UKUR


ALAT UKUR MASSA
1. Neraca Analitis Dua Lengan
Neraca ini berguna untuk mengukur massa benda, misalnya emas, batu, kristal benda, dan lain-lain. Batas ketelitian neraca analitis dua lengan yaitu 0,1 gram.

2. Neraca Ohauss (neraca tiga lengan)

Neraca ini berguna untuk mengukur massa benda atau logam dalam praktek laboratorium. Kapasitas beban yang ditimbang dengan menggunakan neraca ini adalah 311 gram. Batas ketelitian neraca Ohauss yaitu 0,1 gram.



Cara menimbang dengan menggunakan neraca Ohaus adalah sebagai berikut.
a. Posisikan skala neraca pada posisi nol dengan menggeser penunjuk pada lengan depan dan belakang ke sisi kiri dan lingkaran skala diarahkan pada angka nol!
b. Periksa bahwa neraca pada posisi setimbang!
c. Letakkan benda yang akan diukur di tempat yang tersedia pada neraca!
d. Geser ketiga penunjuk diurutkan dari penunjuk yang terdapat pada ratusan, puluhan, dan satuan sehingga tercapai keadaan setimbang!
e. Bacalah massa benda dengan menjumlah nilai yang ditunjukkan oleh penunjuk ratusan, puluhan, satuan, dan sepersepuluhan!

3. Neraca Lengan Gantung

Neraca ini berguna untuk menentukan massa benda, yang cara kerjanya dengan menggeser beban pemberat di sepanjang batang.

4. Neraca Digital

Neraca digital (neraca elektronik) di dalam penggunaanya sangat praktis, karena besar massa benda yang diukur langsung ditunjuk dan terbaca pada layarnya. Ketelitian neraca digital ini sampai dengan 0,001 gram.


ALAT UKUR WAKTU
1. Stopwatch
Stowatch memiliki ketelitian 0,1 detik karena setiap skala pada stopwatch dibagi menjadi 10 bagian. Alat ini biasanya digunakan untuk pengukuran waktu dalam kegiatan olahraga atau dalam praktik penelitian.

2. Arloji

Arloji umumnya dengan ketelitian 1 detik.

3. Penunjuk waktu elektronik

Mencapai ketelitian 1/1000 detik.

4. Jam atom Cesium

Dibuat dengan ketelitian 1 detik tiap 3.000 tahun, artinya kesalahan pengukuran jam ini kira-kira satu detik dalam kurun waktu 3.000 tahun.

ALAT UKUR KUAT ARUS LISTRIK

Alat untuk mengukur kuat arus listrik disebut amperemeter. Amperemeter mempunyai hambatan dalam yang sangat kecil, pemakaiannya harus dihubungkan secara seri pada rangkaian yang diukur, sehingga jarum menunjuk angka yang merupakan besarnya arus listrik yang mengalir.

ALAT UKUR SUHU

Untuk mengukur suhu suatu sistem umumnya menggunakan termometer. Termometer dibuat berdasarkan prinsip pemuaian. Termometer biasanya terbuat dari sebuah tabung pipa kapiler tertutup yang berisi air raksa yang diberi skala. Ketika suhu bertambah, air raksa dan tabung memuai. Pemuaian yang terjadi pada air raksa lebih besar dibandingkan pemuaian pada tabung kapiler. Naiknya ketinggian permukaan raksa dalam tabung kapiler dibaca sebagai kenaikan suhu.
Berdasarkan skala temperaturnya, termometer dibagi dalam empat macam, yaitu termometer skala Fahrenheit, skala Celsius, skala Kelvin, dan skala Reamur. Termometer skala Fahrenheit memiliki titik beku pada suhu 32 oF dan titik didih pada 212 oF. Termometer skala Celsius memiliki titik beku pada suhu 0 oC, dan titik didih pada 100 oC. Termometer skala Kelvin memiliki titik beku pada suhu 273 K dan titik didih pada 373 K. Suhu 0 K disebut suhu nol mutlak, yaitu suhu semua molekul berhenti bergerak. Dan termometer skala Reamur memiliki titik beku pada suhu 0 oR dan titik didih pada 80 oR.

 BESARAN DIMENSI

DIMENSI BESARAN

Dimensi Besaran Pokok dan Besaran Turunan
Dimensi adalah cara penulisan suatu besaran dengan menggunakan simbol (lambang) besaran pokok. Hal ini berarti dimensi suatu besaran menunjukkan cara besaran itu tersusun dari besaran-besaran pokok. Apa pun jenis satuan besaran yang digunakan tidak memengaruhi dimensi besaran tersebut, misalnya satuan panjang dapat dinyatakan dalam m, cm, km, atau ft, keempat satuan itu mempunyai dimensi yang sama, yaitu L.


Di dalam mekanika, besaran pokok panjang, massa, dan waktu merupakan besaran yang berdiri bebas satu sama lain, sehingga dapat berperan sebagai dimensi. Dimensi besaran panjang dinyatakan dalam L, besaran massa dalam M, dan besaran waktu dalam T. Persamaan yang dibentuk oleh besaran-besaran pokok tersebut haruslah konsisten secara dimensional, yaitu kedua dimensi pada kedua ruas harus sama. Dimensi suatu besaran yang dinyatakan dengan lambang huruf tertentu, biasanya diberi tanda [ ]. Tabel 1.4 menunjukkan lambang dimensi besaran-besaran pokok.



Dimensi dari besaran turunan dapat disusun dari dimensi besaran-besaran pokok. Tabel 1.5 menunjukkan berbagai dimensi besaran turunan.



Analisis Dimensi
Setiap satuan turunan dalam fisika dapat diuraikan atas faktor-faktor yang didasarkan pada besaran-besaran massa, panjang, dan waktu, serta besaran pokok yang lain. Salah satu manfaat dari konsep dimensi adalah untuk menganalisis atau menjabarkan benar atau salahnya suatu persamaan. Metode penjabaran dimensi atau analisis dimensi menggunakan aturan-aturan:
a. dimensi ruas kanan = dimensi ruas kiri,
b. setiap suku berdimensi sama.


BESARAN TURUNAN

 BESARAN TURUNAN

Besaran turunan adalah besaran yang dapat diturunkan atau didefinisikan dari besaran pokok. Satuan besaran turunan disesuaikan dengan satuan besaran pokoknya. Salah satu contoh besaran turunan yang sederhana ialah luas. Luas merupakan hasil kali dua besaran panjang, yaitu panjang dan lebar. Oleh karena itu, luas merupakan turunan dari besaran panjang.



Luas = panjang x lebar
         = besaran panjang x besaran panjang

Satuan luas = meter x meter
                    = meter persegi (m^2)

Besaran turunan yang lain misalnya volume. Volume merupakan kombinasi tiga besaran panjang, yaitu panjang, lebar, dan tinggi. Volume juga merupakan turunan dari besaran panjang. Adapun massa jenis merupakan kombinasi besaran massa dan besaran volume. Selain itu, massa jenis merupakan turunan dari besaran pokok massa dan panjang.



 
Besaran Pokok dan Satuan Standar

Besaran Pokok


Besaran-besaran dalam fisika dapat dikelompokkan menjadi dua macam, yaitu besaran pokok dan besaran turunan. Besaran pokok adalah besaran yang satuannya didefinisikan atau ditetapkan terlebih dahulu, yang berdiri sendiri, dan tidak tergantung pada besaran lain. Para ahli merumuskan tujuh macam besaran pokok, seperti yang ditunjukkan pada gambar.


Satuan Standar (satuan sistem internasional)

Satuan merupakan salah satu komponen besaran yang menjadi standar dari suatu besaran. Sebuah besaran tidak hanya memiliki satu satuan saja. Besaran panjang ada yang menggunakan satuan inci, kaki, mil, dan sebagainya. Untuk massa dapat menggunakan satuan ton, kilogram, gram, dan sebagainya.

Satuan Internasional adalah satuan yang diakui penggunaannya secara internasional serta memiliki standar yang sudah baku. Satuan ini dibuat untuk menghindari kesalahpahaman yang timbul dalam bidang ilmiah karena adanya perbedaan satuan yang digunakan.


a. Satuan Standar Panjang
Satuan besaran panjang berdasarkan SI dinyatakan dalam meter (m). Ketika sistem metrik diperkenalkan, satuan meter diusulkan setara dengan sepersepuluh juta kali seperempat garis bujur bumi yang melalui kota Paris. Tetapi, penyelidikan awal geodesik menunjukkan ketidakpastian standar ini, sehingga batang platinairidium yang asli dibuat dan disimpan di Sevres dekat Paris, Prancis. Jadi, para ahli menilai bahwa meter standar itu kurang teliti karena mudah berubah.



0 komentar:

Posting Komentar